______________

_______________

______________

Geothermie

______________

Inflienzmaschine

______________

Aktuelles

Das Götliche Paradox

Setze eigen Energien gegen die Armut...

_______________

Solar kocher



2011.05.28

______________________

_____________

____________

Sonnenofen Nutzung der Sonne im Hochtemperaturbereich

____________

R-C-L

____________________________________

____________________________________

Resonatzfrequenz LC

RLC Wissenschafftsrechner für Schwingkreise
RCL Rechner Setup.zip
Komprimiertes Archiv im ZIP Format 414.2 KB

____________________________________

Flat Plate Capacitor Calculator

___________________________________

Flat Spiral Coil

____________________________________

Multi Mini Capacitor

____________________________________

Capacitance of Toroid

____________________________________

Capacitance of Sphere

____________________________________

Thomsonsche Schwingungsgleichung





Mit der Thomsonschen Schwingungsgleichung lässt sich die Resonanzfrequenz f0 eines Schwingkreises mit der Kapazität C und der Induktivität L berechnen. Sie wurde 1853 von dem britischen Physiker William Thomson, dem späteren Lord Kelvin, entdeckt.

Oder umgeformt für die Schwingungszeit:

T = 2\pi\sqrt{LC}

Herleitung

Im Resonanzfall ist der Resonanzwiderstand so groß wie der Serienwiderstand. Der kapazitive Widerstand des Kondensators und induktiver Widerstand der Spule innerhalb des Schwingkreises kompensieren sich auf null.

XLXC = 0
\omega_0 L = \frac{1}{\omega_0 C}
2\pi f_0 L = \frac{1}{2\pi f_0 C} , da gilt ω = 2πf
f_0^2 = {\frac{1}{4\pi^2LC}}
f_0 = \frac{1}{2\pi\sqrt{LC}} , üblich ist auch die Form: \omega_0 = \frac{1}{\sqrt{LC}}

Herleitung nach dem Energieerhaltungssatz

Betrachten wir den elektrischen Schwingkreis als ein geschlossenes System, so ist die Summe aller Energieformen in diesem System zu jeder Zeit t konstant.

\!\,E_\mathrm{mag}(t)+E_{\rm el}(t) = E_{\rm Gesamt}
Emag: magnetische Feldenergie der Spule
Eel: elektrische Feldenergie des Kondensators
EGesamt: Gesamtenergie des Systems (konstant)

Setzt man die entsprechenden Formeln ein, so kommt man auf folgende Differentialgleichung:

\frac{1}{2}LI^2(t) + \frac{1}{2C}Q^2(t) = E_\mathrm{Gesamt}

Aus

I(t) = \frac{dQ(t)}{dt} = \dot Q(t)

folgt:

\frac{1}{2}L\dot Q^2(t) + \frac{1}{2C}Q^2(t) = E_\mathrm{Gesamt}

Nun leitet man diese Gleichung nach der Zeit ab und erhält:

L\dot Q \ddot Q(t)+\frac{1}{C}Q \dot Q(t) = 0
I(t)\left(L \ddot Q + \frac{1}{C}Q(t)\right) = 0
L \ddot Q + \frac{1}{C}Q(t) = 0, da im Schwingkreis gilt: I(t) \ne 0.

Um diese Gleichung zu lösen, müssen wir einen Zusammenhang zwischen Q(t) und \ddot Q(t) herstellen. Dazu verwenden wir eine Sinusfunktion als Lösungsansatz, da sie sich auf Grund ihrer Periodizität gut zur Beschreibung einer Schwingung eignet.

Q(t) = \hat Q \cdot \sin(\omega t + \varphi)
\dot Q(t) = \omega \hat Q \cdot \cos(\omega t + \varphi)
\ddot Q(t) = -\omega^2 \hat Q \cdot \sin(\omega t + \varphi) = -\omega^2 \cdot Q(t)
\hat Q: maximale Ladung (Amplitude)
ω: Kreisfrequenz
\varphi: Phasenverschiebung

Durch Einsetzen ergibt sich:

\frac{1}{C}Q(t)-\omega^2 L Q(t) = 0
Q(t)\left(\frac{1}{C} - \omega^2 L\right) = 0
\frac{1}{C} - \omega^2 L = 0, da im Schwingkreis gilt: Q(t) \ne 0

Daraus folgt mit ω = 2πf:

\frac{1}{C} - 4 \pi^2 f_0^2 L = 0
f_0^2 = {\frac{1}{4\pi^2LC}}
f_0 = \frac{1}{2\pi\sqrt{LC}}

Die Thomsonsche Schwingungsgleichung gilt allerdings nur für reine Serienschwingkreise und reine Parallelschwingkreise. Bei komplexeren Topologien gilt es, die Frequenz für die Erfüllung der folgenden Bedingung selbst herzuleiten:

XL = XC

Des Weiteren muss bei der Anwendung der Thomsonschen Schwingungsgleichung darauf geachtet werden, dass sich das jeweilige System im Schwingfall befindet - die Dämpfung durch den ohmschen Widerstand also nicht zu groß ist. Bei nicht zu großer Dämpfung kann die veränderte Resonanzfrequenz, mit dem Verlustwiderstand RL von L, berechnet werden:

\omega_D = \omega_0{\sqrt{1-R_L^2 \frac{C}L}}

 

____________________________________

Onelin LC Rechner

____________________________________

Schwingkreise
Schwingkreis.pdf
Adobe Acrobat Dokument 254.4 KB

____________________________________